Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(6): 723-730, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37748869

RESUMO

Investigation of aminoglycoside acetyltransferases in actinobacteria of the genus Streptomyces is an integral part of the study of soil bacteria as the main reservoir and possible source of drug resistance genes. Previously, we have identified and biochemically characterized three aminoglycoside phosphotransferases, which cause resistance to kanamycin, neomycin, paromomycin, streptomycin, and hygromycin B in the strain Streptomyces rimosus ATCC 10970 (producing oxytetracycline), which is resistant to most natural aminoglycoside antibiotics. In the presented work, it was shown that the resistance of this strain to other AGs is associated with the presence of the enzyme aminoglycoside acetyltransferase, belonging to the AAC(2') subfamily. Induction of the expression of the gene, designated by us as aac(2')-If, in Escherichia coli cells determines resistance to a wide range of natural aminoglycoside antibiotics (neomycin, gentamicin, tobramycin, sisomycin, and paromomycin) and increases minimum inhibitory concentrations of these antibiotics.


Assuntos
Streptomyces rimosus , Paromomicina , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Neomicina , Escherichia coli
2.
BioTech (Basel) ; 12(2)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37218756

RESUMO

Many kinds of Lactobacillus are common occupants of humans' digestive tract that support the preservation of a balanced microbial environment that benefits host health. In this study, the unique lactic acid bacterium strain Limosilactobacillus fermentum U-21, which was isolated from the feces of a healthy human, was examined for its metabolite profile in order to compare it to that of the strain L. fermentum 279, which does not have antioxidant (AO) capabilities. By using GC × GC-MS, the metabolite fingerprint of each strain was identified, and the data were then subjected to multivariate bioinformatics analysis. The L. fermentum U-21 strain has previously been shown to possess distinctive antioxidant properties in in vivo and in vitro studies, positioning it as a drug candidate for the treatment of Parkinsonism. The production of multiple distinct compounds is shown by the metabolite analysis, demonstrating the unique characteristics of the L. fermentum U-21 strain. According to reports, some of the L. fermentum U-21 metabolites found in this study have health-promoting properties. The GC × GC-MS-based metabolomic tests defined strain L. fermentum U-21 as a potential postbiotic with significant antioxidant potential.

3.
Microorganisms ; 10(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36014100

RESUMO

To date, transcriptomics have been widely and successfully employed to study gene expression in different cell growth phases of bacteria. Since bifidobacteria represent a major component of the gut microbiota of a healthy human that is associated with numerous health benefits for the host, it is important to study them using transcriptomics. In this study, we applied the RNA-Seq technique to study global gene expression of B. longum at different growth phases in order to better understand the response of bifidobacterial cells to the specific conditions of the human gut. We have shown that in the lag phase, ABC transporters, whose function may be linked to active substrate utilization, are increasingly expressed due to preparation for cell division. In the exponential phase, the functions of activated genes include synthesis of amino acids (alanine and arginine), energy metabolism (glycolysis/gluconeogenesis and nitrogen metabolism), and translation, all of which promote active cell division, leading to exponential growth of the culture. In the stationary phase, we observed a decrease in the expression of genes involved in the control of the rate of cell division and an increase in the expression of genes involved in defense-related metabolic pathways. We surmise that the latter ensures cell survival in the nutrient-deprived conditions of the stationary growth phase.

4.
Microb Cell Fact ; 20(1): 226, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930242

RESUMO

BACKGROUND: All living organisms have developed during evolution complex time-keeping biological clocks that allowed them to stay attuned to their environments. Circadian rhythms cycle on a near 24 h clock. These encompass a variety of changes in the body ranging from blood hormone levels to metabolism, to the gut microbiota composition and others. The gut microbiota, in return, influences the host stress response and the physiological changes associated with it, which makes it an important determinant of health. Lactobacilli are traditionally consumed for their prophylactic and therapeutic benefits against various diseases, namely, the inflammatory bowel syndrome, and even emerged recently as promising psychobiotics. However, the potential role of lactobacilli in the normalization of circadian rhythms has not been addressed. RESULTS: Two-month-old male rats were randomly divided into three groups and housed under three different light/dark cycles for three months: natural light, constant light and constant darkness. The strain Levilactobacillus brevis 47f was administered to rats at a dose of 0.5 ml per rat for one month and The rats were observed for the following two months. As a result, we identified the biomarkers associated with intake of L. brevis 47f. Changing the light regime for three months depleted the reserves of the main buffer in the cell-reduced glutathione. Intake of L. brevis 47f for 30 days restored cellular reserves of reduced glutathione and promoted redox balance. Our results indicate that the levels of urinary catecholamines correlated with light/dark cycles and were influenced by intake of L. brevis 47f. The gut microbiota of rats was also influenced by these factors. L. brevis 47f intake was associated with an increase in the relative abundance of Faecalibacterium and Roseburia and a decrease in the relative abundance of Prevotella and Bacteroides. CONCLUSIONS: The results of this study show that oral administration of L. brevis 47f, for one month, to rats housed under abnormal lightning conditions (constant light or constant darkness) normalized their physiological parameters and promoted the gut microbiome's balance.


Assuntos
Ritmo Circadiano/fisiologia , Escuridão , Microbioma Gastrointestinal/fisiologia , Levilactobacillus brevis/fisiologia , Luz , Animais , Microbioma Gastrointestinal/genética , Masculino , Probióticos/administração & dosagem , Ratos
5.
Front Immunol ; 11: 595877, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304352

RESUMO

As permanent residents of the normal gut microbiota, bifidobacteria have evolved to adapt to the host's immune response whose priority is to eliminate pathogenic agents. The mechanisms that ensure the survival of commensals during inflammation and maintain the stability of the core component of the normal gut microbiota in such conditions remain poorly understood. We propose a new in vitro approach to study the mechanisms of resistance to immune response factors based on high-throughput sequencing followed by transcriptome analysis. This approach allowed us to detect differentially expressed genes associated with inflammation. In this study, we demonstrated that the presence of the pro-inflammatory cytokines IL-6 and TNFα to the growth medium of the B. longum subsp. longum GT15 strain changes the latter's growth rate insignificantly while affecting the expression of certain genes. We identified these genes and performed a COG and a KEGG pathway enrichment analysis. Using phylogenetic profiling we predicted the operons of genes whose expression was triggered by the cytokines TNFα and IL-6 in vitro. By mapping the transcription start points, we experimentally validated the predicted operons. Thus, in this study, we predicted the genes involved in a putative signaling pathway underlying the mechanisms of resistance to inflammatory factors in bifidobacteria. Since bifidobacteria are a major component of the human intestinal microbiota exhibiting pronounced anti-inflammatory properties, this study is of great practical and scientific relevance.


Assuntos
Bifidobacterium longum , Regulação Bacteriana da Expressão Gênica , Interleucina-6/imunologia , Fator de Necrose Tumoral alfa/imunologia , Bifidobacterium longum/genética , Bifidobacterium longum/crescimento & desenvolvimento , Bifidobacterium longum/imunologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Redes Reguladoras de Genes , Genoma Bacteriano , Inflamação/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...